зміщення оцінок параметрів моделі, які розраховуються за методом найменших квадратів


Зміст
1.Поняття про мультиколінеарність та її вплив на оцінку параметрів моделі
2.Тестування наявності мультиколінеарності
 

1. Поняття про мультиколінеарність та її вплив на оцінку параметрів моделі
Означення: Суть мультиколінеарності полягає в тому, що в багатофакторній регресійній моделі дві або більше незалежних змінних пов'язані між собою лінійною залежністю або, іншими словами, мають високий ступінь кореляції:
                                                                                           
^  Природа мультиколінеарності



                             Практичні наслідки мультиколінеарності:
Мультиколінеарність незалежних змінних (факторів) призводить до:

Зауваження.   Мультиколінеарність не є проблемою, якщо єдиною метою регресійного аналізу є прогноз (оскільки чим більше значення R2, тим точніший прогноз). Якщо метою аналізу є не прогноз, а дійсне значення параметрів, то мультиколінеарність перетворюється на проблему, оскільки її наявність призводить до значних стандартних похибок оцінок параметрів.
 

^ 2. Тестування наявності мультиколінеарності.

Зовнішні ознаки наявності мультиколінеарності


Для визначення мультиколінеарності здебільшого застосовують такі тести:
- F-тест, запропонований Глобером і Фарраром ( інша назва: побудова допоміжної регресії)
- Характеристичні значення та умовний індекс
 

                                                            Алгоритм Фаррара-Глобера:
1. Визначити критерій Пірсона χ2 (“хі”- квадрат),  для цього знайти:
а). нормалізовані змінні х1, х2, …, х m:
                                                                   

б). на основі матриці нормалізованих змінних, обчислити кореляційну матрицю:
                                                           

в). обчислити визначник кореляційної матриці:
г). обчислити критерій χ2:



Порівняти значення χ2 з табличним при    ступенями свободи і рівні значущості α,(якщо χ2> χ2табл, то в масиві незалежних змінних існує мультиколінеарність).
 

2. Обчислити F- критерій Фішера.
а). обчислити матрицю похибок:


б). розрахувати F- критерії


 Порівняти значення Fk з табличним при ступенями свободи і рівні значущості α

(якщо Fk>Fтабл, то відповідна k-та незалежна змінна
мультиколінеарна з іншими).
в). розрахувати коефіцієнти детермінації
для кожної змінної:


3. Визначити t- критерій Ст’юдента:
 

              де                    

Порівняти значення              з табличним при                
 

ступенями свободи і рівні значущості α (якщо

то між незалежними змінними хk та хj

існує мультиколінеарність).
F-тест
Нехай -коефіцієнт детермінації в регресії, яка пов'язує фактор хi з іншими факторами.
1) для кожного коефіцієнта детермінації розраховуємо Fi-відношення:


F-тест перевіряє гіпотезу Н0 :


проти гіпотези Н1:

2) Fкр знаходимо за таблицею F-розподілу Фішера з (т-1) і (п-т) ступенями свободи і заданим рівнем значущості;

3) якщо Fi > Fкр , то гіпотезу Н0 відкидаємо
(хi — мультиколінеарний фактор),
якщо Fi< Fкр , то гіпотезу Но приймаємо
(фактор хi не є мультиколінеарним).
1898297626673856.html
1898407565091255.html
1898605834310174.html
1898735872443143.html
1898813600684140.html